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Abstract The present work focuses on the design and planning of sustainable supply chains under uncertainty. Thus, a stochastic dynamic 

mathematical model formulation is proposed, which accounts for several uncertain parameters, namely: demand, supply, products’ rate of return, 

and construction and transportation costs. Moreover, sustainability concerns are acknowledged through the multi-objective nature of the model, 

where three distinctive objective functions are considered as follows: economic, through Net Present Value; environmental, assessed using the Lice 

Cycle Assessment approach; and social, through the incorporation of key insights on the fairly recent social methodology, Social Life Cycle 

Assessment. The formulated model is then applied to a representative case-study of Calzedonia Group, an Italian group established in the garment 

industry. This work contributes to the literature by building on several identified research gaps such as: the need to incorporate uncertainty concerns 

into the sustainable supply chain management studies; the need for an integrated approach that accounts for uncertainty in several distinctive 

parameters and throughout a larger time horizon; and the increasingly need to account for an integrated approach for the social assessment of any 

supply chain.  

Keywords: Supply chain; Sustainability; Uncertainty; Stochastic Optimization; Dynamic Optimization; Calzedonia Group 

 
1. Introduction  
The term supply chain (SC) has firstly appeared in the 
literature in 1982 when Oliver and Webber proposed the first 
definition for the management of such systems [1]. Over the 
years, there has been a growing concern in environmental 
issues, leading to the incorporation of reverse logistics in 
SC’s activities, and thus, the introduction of the term closed-
loop supply chain [1]–[3]. More recently, and apart from 
economic and environmental concerns, social issues, 
namely job creation, discrimination, and workers’ safety and 
satisfaction, have also started to be accounted for in the 
design, planning and operation of supply chains. 
Sustainable development has been defined by the 
Brundtland Commission  as the “development that meets 
the needs of the present without compromising the ability of 
future generations to meet their own needs” [4]. This was 
later on associated with the three pillars of sustainability, 
economic, environmental, and social, commonly known as 
the triple bottom line, and firstly proposed by [5]. 
Accordingly, sustainable supply chain refers to complex 
network systems involving numerous entities that manage 
products from suppliers to customers and their associated 
returns, always accounting for social, environmental and 
economic impacts [1], [6].  
Industries must be capable of designing, planning and 
operating their entire supply chain while considering a 
sustainability path in a way that does not compromise the 
sustainability of the other players involved [7]–[9]. The main 
problem, however, is the inherent complexity, which can be 
even greater when incorporated in more demanding supply 
chain systems (e.g. closed-loop supply chain). Additionally, 
the participants of a supply chain often face various 
uncertainties, which may consider several parameters, 
namely, raw material supplies, products demands, and 
commodity prices and costs, and highly impact the overall 
structure and network of a supply chain [10]. Hence, tackling 
and modelling the inherent uncertainty in sustainable supply 
chain systems is vital so that the decision-maker may act 
with more knowledge and confidence.  
To answer this challenge, the use of operational research 
methods is a path to explore [1]. Deterministic optimization 
is not best-suited to model uncertainty, given that these 
types of problems are formulated with known parameters, 
while real-world problems almost invariably include some 
uncertainties and difficulties in correctly estimating key 
parameters. For this reason, several methods to deal with 
uncertainty have been acknowledged, such as: stochastic 
programming where the uncertainty parameters are 
characterized as random variables with known probabilities, 
fuzzy programming which assumes that some variables are 
fuzzy numbers, and robust optimization, where the worst-
case scenario is taken into consideration [11]. 
The remainder of this paper is organized as follows. Section 
2 identifies several optimization methods suitable for 
modelling uncertainty. Section 3 presents a literature review 
on the advances made in the field. Section 4 focuses on the 
problem statement and mathematical formulation. al model 
Section 5 represents the model validation through its 
 

 
application into a representative case-study of Calzedonia 
Group. Finally, in section 6, final remarks of the work 
developed are stated. 
 
2. Modelling Uncertainty Methods 
 
Stochastic Programming  
Stochastic mathematical programming considers that 
certain data are unknown, and hence follows a discrete or 
continuous probability distribution, which is either based on 
historical data, or estimated [11], [12]. Considering this, two 
types of stochastic programming may be acknowledged: (i) 
the recourse-based stochastic programming approach, 
which deals with decision variables organized into two sets, 
and whose goal is to minimize the expected recourse costs; 
and, (ii) the probabilistic or chance-constraint stochastic 
programming method, whose focus is on the system’s ability 
to meet feasibility in an uncertain environment, where the 
constraints to be optimized depend on certain probabilities. 
Considering the latter, and despite being quite robust, the 
probabilistic approach is often difficult to solve due to 
several challenges in transforming the chance constraints 
into deterministic ones, so that the solution may be reached.  
Therefore, the most commonly cited stochastic method is 
the standard two-stage/recourse-based approach, where 
decision variables of an optimization problem under 
uncertainty are partitioned into two sets [11]. Thus, the first-
stage variables (“here and now” decisions) must be decided 
before the actual realization of the uncertain parameters, 
and once the decision-maker takes some action upon the 
first-stage, random events occur, affecting the outcome of 
these. Subsequently, further design/operational policy 
improvements can be made by selecting, at a given cost, 
the values of the second-stage/recourse, variables (“wait 
and see” decisions), being these interpreted as corrective 
measures against any infeasibilities arising due to a 
particular realization of uncertainty. Hence, the goal is to 
choose the first-stage variables in a way that the sum of the 
first-stage costs and the expected value of the random 
second-stage costs is minimized, leading to an optimal 
solution feasible for all realizations of the uncertain 
parameters [11], [13]. 
Considering the above, the key aspect of stochastic 
programming is that it is mainly based on commonly known 
and applied probabilistic terms. Moreover, this approach 
allows decision-makers to have a complete view of the 
effects of uncertainties and the relationships between 
uncertain inputs and resulting solutions. Nonetheless, in 
real-case scenarios is often difficult to build a probability 
distribution due to the lack of historical data for the uncertain 
parameters and/or the high cost for acquiring it. Additionally, 
the further incompleteness/impreciseness of observed 
information (due to market turbulence, for instance) may 
lead to dual uncertainties of randomness, as decision-
makers express different subjective judgements upon a 
same problem [14]. Finally, and as recent works model 
uncertainty through the scenario-based approach, the great 
number of scenarios may lead to large-sized, 
computationally challenging problems [15], [16].  
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Fuzzy Programming 
The fuzzy programming approach may be applied when 
situations are not clearly defined, or an exact value is not 
critical to the problem. Hence, fuzzy programming does not 
require an event to either be black or white (crisp set), but 
instead, have a range of grey values between two given 
extremes, thus increasing the number of possible 
applications in real-case scenarios. In a fuzzy-based 
approach, random parameters are considered fuzzy 
numbers and constraints are treated as fuzzy sets. 
Moreover, some constraint violation is allowed and the 
degree of satisfaction of a given constraint is defined as the 
membership function of the constraint [11]. 
Furthermore, two main types of fuzzy programming may be 
acknowledged: flexible, and possibilistic programming, 
where the former deals with right-hand side uncertainties 
and can be applied when there is uncertainty regarding the 
exact values of the coefficients, and some constraints 
violation is acceptable within a certain range. As for the 
possibilistic programming, it recognizes uncertainties in 
both the objective function and constraint coefficients [11], 
[14]. Finally, in both types of fuzzy programming, the 
membership function is used to represent the constraints 
satisfaction degree, the decision-maker’s expectations 
about the objective function level, and the range of 
coefficients’ uncertainty [11]. 
On another note, and unlike crisp models, fuzzy systems, 
combined with an interactive solution process, do not 
require a collection of extensive data, solving the often-
existing information dilemma. Hence, the first step is to 
model the fuzzy system only using easily achieved 
information. The decision-maker must then decide which 
additional information has to be collected and processed, 
based on the fuzzy model solution. The data representation 
and the solution may be improved stepwise by gathering 
objective-oriented additional information, and since the 
collection of input data is cut back, its incurring costs can be 
considerably reduced [17]. Another key aspect of the fuzzy 
sets’ theory is that it offers a practical way to model vague 
and qualitative data. Hence, and instead of replacing vague 
data by “average data”, these are modelled by fuzzy 
numbers and fuzzy intervals, as precisely as a decision-
maker will be able describe them [17]. Besides, fuzzy 
models allow for the mixed integer problems to be solved 
relatively easily. Comparing these with classical linear 
programming models, where integer solutions nearby the 
optimum solution are often not feasible, in fuzzy models, the 
right-hand sides are not crisp boundaries, and the decision-
maker can thus choose one of the neighbour solutions [17]. 
Considering this, the key aspect of this method is its 
capability to estimate trough possibility rather than 
probability, key in situations with information ambiguity [18]. 
Likewise, the fuzzy approach does not allow the final 
deterministic equivalent formulation of the uncertain model 
to blow up in size with the increased number of uncertain 
parameters [13]. Moreover, the fuzzy logic application can 
provide significant advantages for sustainable supply 
chains, as it allows the construction of compromises 
between conflicting objectives, by considering an overall 
satisfaction degree as trade-off between several objectives 
and constraints. Additionally, intersection of fuzzy 
constraints and overall objectives can be smoother, 
increasing the chance to get a better solution within the 
overlapping areas of constraints and objectives. 
Nonetheless, the fuzzy method still lacks in its inability to 
represent the exact uncertainty nature, leading to results 
that could depend on the fuzzification approach [13]. 
 
Robust Optimization 
Robust optimization provides a framework capable of 
handling the parameters uncertainty in a way that it is able 
to immunize the optimal solution for any realization of the 
uncertainty in a given bounded uncertainty set. Even though 
this approach needs a priori knowledge, it does not require 
the actual distribution, but only the relevant distribution, 
leading to a much easier process [15]. The main purpose of 
the model is thus to find a solution which is feasible and 
optimal, that is, to always satisfy the constraints despite 
parametric uncertainties. 
Furthermore, robust optimization is commonly used to 
address uncertainties in investment portfolio selection and 
is beginning to gain more attention in engineering research 
such as production scheduling, resource allocation, project 
management, supply chain planning, and capacity 
expansion [16]. This increasing interest in robust 
optimization is a consequence of being a tailored approach 

to the available information, relatively easy to understand 
intuitively and highly useful in practise [19]. Moreover, this 
method also leads to a reduction in computational costs and 
combines computational tractability with the structural 
properties of the optimal policy [16], [27]. Furthermore, and 
as the robust optimization approach focuses on the worst-
case, if the solution is efficient for this scenario, it is thus 
efficient for every other possible outcome. However, 
because it is intrinsically a worst-case approach, feasibility 
often comes at a cost of performance and generally leads 
to overconservative solutions [20]. 
The adaptive robust optimization approach, on the other 
hand, has been proposed so as to mitigate the conservatism 
present in the traditional version of static robust 
optimization. Hence, instead of optimizing all decision 
variables solely as here-and-now, this approach 
incorporates two stages of decision (wait-and-see), with the 
intent of reaching the desirable goal, while anticipating the 
worst-case materialization of the uncertain parameters 
within an uncertainty set [21]–[23]. Moreover, the adaptive 
robust optimization model may be more practical than the 
conventional stochastic programming one, given that it only 
requires a deterministic uncertainty set, rather than a hard-
to-obtain probability distribution on the uncertain data [24]. 
Additionally, in the two-stage adaptive robust optimization, 
“second-stage decisions are made to hedge against the 
worst-case which is confined by the budgets of uncertainty 
and the uncertainty set” [23]. Lastly, this method has been 
applied to decision-making problems under uncertainty in 
areas, such as: unit commitment for power systems; 
network flow optimization; and, robust transportation 
problems and production scheduling problems for batch 
manufacturing processes [23]. 
 
Dynamic Optimization 
In dynamic approaches, optimization is performed over 
time, with focus its on maximizing or minimizing the 
costs/benefits of a given objective function over a period of 
time, and where the decision-maker is responsible of 
making multiple decisions over time. The approach’s overall 
performance depends on all decisions made sequentially 
during a given time interval, where previous decisions may 
have an impact on later decision-making. [25]. Objective 
functions show a sequential structure, and decisions are 
made in stages where each, besides providing an 
immediate reward, affects the future rewards and hence the 
context of future decisions [26]. 
Considering the above, stochastic dynamic programming 
focuses on solving multi-stage optimization problems, 
where one or several parameters in the problem are 
modelled as stochastic variables/processes [27]. The 
principle of the stochastic dynamic programming approach 
is based on a recursive decomposition of a multi-stage 
problem into simpler sub-problems that, once solved, are 
assembled to provide an overall solution [28].  
In robust dynamic programming, however, information is 
revealed in subsequent stages, and “robustness is the 
property of dynamic systems to tolerate variations of parts 
of the system without exceeding predetermined tolerance 
bounds in the vicinity of some nominal dynamic behaviour” 
[29]. Few advances have been made in this field, however, 
the worst-case formulations can be expressed as semi-
infinite programs [30]. A probabilistic framework may also 
be used to formulate an approximate but computationally 
tractable solution approach for robust dynamic optimization 
problems involving expected value dynamic optimization 
and additional chance constraints [31]. 
Given its structure, applying dynamic optimization to real-
world situations may encounter several difficulties, such as 
the large computational burden of having a large number of 
states and actions that must be known in order to compute 
the optimal action in any given state. Moreover, other issues 
relate to the lack of proper awareness of the theory’s 
potentials, the requirement of rather complexed models, 
and the possible lack of accurate data [26], [32]. Finally, 
several authors have explored the possibility of combining 
at least two methods and hence produce a hybrid approach. 
As a result more robust techniques are applied, and 
drawbacks mitigated , by combining the best characteristics 
of each approach.  
 
3. Literature Review 
In order to provide a thorough analysis and review on the 
advances made in the field, a literature review has been 
performed on the optimization methods that have been 
developed for designing supply chain networks under 
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uncertainty. Hence, key research questions have been 
developed as follows: 
Q1) What type of parameters are usually considered to be 
uncertain when considering supply chains? 
Q2) What optimization methods have been predominantly 
explored when addressing uncertainty in supply chains?  
Q3) Which optimization method studied has predominately 
been applied to model each type of uncertain parameters 
considered? 
Q4) What decision levels (strategic, tactical, or operational) 
have been addressed when applying the discussed 
methods to model uncertainty in supply chains? 
Q5) What sustainability pillars (economic, environmental, 
and social) have been explored in the modelling of 
uncertainty in sustainable supply chains? 
With this regard, and in order to provide proper answers to 
the questions above, this analysis focuses, not only on 
bringing new relevant data to the main findings of the work 
developed in [33] concerning the supply chain network 
design under uncertainty, but also on further exploring the 
uncertainty topic incorporation into the sustainable supply 
chain network design and planning. Hence, a sample of 72 
key articles has been selected and added to the research 
already conducted in [33], where a total of 170 have been 
considered. Moreover, this literature review accounts for 
both sustainable and non-sustainable supply chains under 
uncertainty so as to provide proper awareness on the work 
being developed on the subject.  
Therefore, a literature review has been conducted, where 
only articles published in peer-reviewed journals and written 
in English have been considered. Moreover, the study has 
involved two main researches: one based on articles from 
2016 up to 2020 whose focus is on providing an update on 
the work developed by [33] on supply chains under 
uncertainty, and another one highlighting the achieved 
studies since 2000 until 2020 on sustainable supply chains 
under uncertainty, a key issue for the purpose on this work. 
Finally, all papers concerning only one sustainability pillar 
have been excluded, leaving only papers where at least two 
sustainability pillars have been accounted for.  
Accordingly, several aspects have been considered so as 
to characterize the sample of papers analysed. Thus, and 
in light of the main findings of [33], it is clear that more than 
50% of the papers concerning supply chain network design 
(SCND) have been published since 2012. Moreover, it is 
also clear that, prior to 2010, little work has been developed 
in the field of sustainable supply chain network design 
(SSCND). Hence, it is plausible to state that several 
developments have been made in the area of optimization, 
with a fairly recent trend on the incorporation of 
sustainability concerns into the design and planning of 
supply chains under uncertainty. Further aspects reveal that 
a larger quantity of contributions on SCND under 
uncertainty have been provided by the European Journal of 
Operational Research, whereas the Journal of Cleaner 
Production represents the higher contribution in the 
modelling of uncertainty in supply chains with a 
sustainability focus. Finally, the sample of 72 papers has 
also showed that a large contribution has been provided by 
authors from China, Canada, and the USA. Other relevant 
contributors are European countries, such as France, 
Germany, Norway, and Italy.  
 
Sample Categorization 
A sample categorization has been conducted so as to 
provide crucial information on the studied sample of papers, 
while answering questions Q1 – Q5 presented above. 
Considering this, question Q1’s purpose is to understand 
the parameters that are most often considered to be 
uncertain. Thus, and in light of both this research and the 
work developed in [33], it becomes clear that the 
parameters with the highest frequency of being uncertain, 
in both SCND and SSCND are, respectively: demand; 
supply; environmental and/or social impacts (only 
considered in the latter scenario); supply; costs (namely, 
transportation, and production); capacities; and, rates of 
products’ returns.  
On another note, question Q2 aims at understanding the 
distribution of papers among the discussed methods used 
to model uncertainty in supply chains, as discussed in 
Section 2. Accordingly, and aligned with the work developed 
in [33], papers that account for uncertainty concerns most 
often considered the stochastic programming approach as 
the best-suited approach, for both SCND, and SSCND. 
Following this is robust programming, and fuzzy 
programming. Additionally, special considerations should 
also be made for the application of more sophisticated and 

robust approaches, such as stochastic dynamic 
programming, hybrid programming, and robust adaptive 
programming.  
Now considering question Q3, this can be answered by 
analysing the main optimization methods used to model 
each of the main uncertain parameters accounted for, 
regardless of the considered scenario, SCND or SSCND. 
Accordingly, demand uncertainty as showed to be mainly 
modelled through the usage of stochastic programming, 
followed by robust programming and fuzzy programming. 
Moreover, environmental impacts uncertainties are mainly 
modelled through stochastic and fuzzy programming, while 
social impacts, costs and returned products rates 
uncertainties heavily rely on fuzzy programming to be 
accounted for. Moreover, supply uncertainties are mainly 
modelled through stochastic programming optimization. 
Capacities uncertainties (e.g., facilities, transportation), on 
the other hand, rely equally on stochastic and fuzzy 
programming methods, with little work developed using 
robust programming. Thus said, it is plausible to state that 
in cases where historical data is given and/or easily 
obtained (e.g., demand), stochastic programming is the 
preferred method. Nevertheless, in cases where historical 
data is difficult to obtain, fuzzy programming has been the 
preferred approach to use.  
On another note, question Q4’s purpose is to understand 
the main focus of the sample of papers regarding the 
different decision levels in a supply chain: strategic; tactical; 
and operational. Accordingly, one can conclude that these 
papers have been mainly focused on both strategic and 
tactical aspects. Considering the former, most decisions 
relate to the supply chain network design of any kind, 
forward, reverse, or closed-loop. As of the latter, some of 
the considered decisions relate to inventory management, 
and scheduling and production planning. Operational 
aspects, on the other hand, represent the decision level with 
the least amount of consideration in the selected papers. 
Furthermore, it is also possible to state that several papers 
considered strategic and tactical aspects, while only a few 
looked at both strategic and operational levels. As of tactical 
and operational aspects, these have been rarely combined, 
while no paper has considered all three decision levels. 
Finally, question Q5 aims at focusing specifically on the 
sample of papers that account for sustainability concerns, 
with the purpose of understanding the main sustainability 
focuses considered. Therefore, it is clear that the selected 
researches have a major focus on both economic and 
environmental concerns, where all papers consider this 
combination of sustainability pillars. Additionally, there is a 
lack of attention towards social concerns, which is only 
considered when combined with the remaining 
sustainability pillars. In light of this, one can state that, when 
addressing sustainability concerns, most authors only focus 
on the more studied and researched pillars, that is, 
economic and environmental, leaving a large research gap 
in the incorporation of social concerns.  
Bearing this in mind, one can further detail the information 
provided and present the major aspects considered in each 
sustainability pillar. Thus, and as of the economic pillar, 
research shows that  cost reduction has been the main 
economic objective function. The Net Present Value (NPV), 
an indicator suitable for investment situations with high risk 
levels, however, is only considered in a small percentage of 
the papers. Moreover, when considering the environmental 
pillar assessment, it is clear that the majority of papers cover 
the global warming factor, represented by aspects related 
to carbon dioxide emissions and greenhouse gases. Hence, 
it is possible to state that the environmental studies have 
been exploring a narrow perspective, where only aspects 
related with the carbon footprint have been measured. 
Additionally, utilities consumption is also considered, 
followed by waste reduction, even if the latter does not 
represent an environmental impact category, but instead a 
flow. Following these are biodiversity, products recovery, 
and fuel and energy consumption. Finally, the use of the 
Life-Cycle Assessment (LCA) approach is verified in a small 
sample of papers. This approach, described as the most 
scientifically reliable method currently available for studying 
and evaluating the impacts of a certain product or process, 
as had little attention, despite being more complete 
methodology to assess environmental impacts. Lastly, and 
regarding the social pillar, it is possible to verify that job 
creation has been the most common indicator, followed by 
aspects related to regional, safety and health of workers, 
and overall satisfaction of consumers. Considering this, it is 
clear that only single issues have been applied and hence 
there is no integrated approach. Moreover, and given the 
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relative diversity of indicators used, it is plausible to state 
that authors are still looking for a clear definition of social 
sustainability.  
 
Sample Assessment – Conceptual Map 
A sample assessment has been performed through a 

conceptual map so as to graphically portray the literature 

focus and the interest devoted to the research community 

to each one of the sustainable supply chain dimensions 

analysed. Thus, and according to Figure 1, sustainable 

supply chain (SSC) under uncertainty is represented as the 

central point in this map, which then ramifies into three main 

research streams representing the decision levels: 

strategic; tactical; and operational. In turn, the sample of 

papers concerning specifically SSCND is then further 

divided depending on each sustainability pillar: economic; 

environmental; and social. Lastly, the sample of papers is 

further divided according to the final layer of division related 

to the optimization methods used to model uncertainty: 

stochastic; fuzzy; robust; and hybrid, which can either be 

through the combination of both stochastic and fuzzy 

optimization methods (SF), stochastic and robust methods 

(SR), or fuzzy and robust optimization methods (FR). It is 

also relevant to state that the usage of stochastic dynamic 

optimization is represented through the ‘+1’ present in some 

stochastic boxes. Hence, and considering the decision 

levels dimension, the strategic level has been the most 

studied one. Among these papers, both the economic and 

the environmental pillars have been assessed at all times. 

Social concerns, on the other hand, have only been 

accounted for in about 27.6% of the papers with strategic 

purposes. Besides, and by further looking into this analysis, 

it is clear that stochastic programming has been the most 

used approach to model uncertainty while considering 

strategic decisions and economic and environmental 

concerns, followed by robust optimization and fuzzy 

programming. Regarding the strategic-social group, it is 

clear thar both stochastic and fuzzy programming are the 

most used methods, followed by robust optimization. Lastly, 

it should also be acknowledged the usage of more than one 

programming method in this strategic group, where all 

sustainability pillars have been covered by, at least, two 

papers using hybrid programming, where two of the studied 

methods have been combined.  On another note, the 

tactical level has been essentially addressed in conjunction 

with strategic decisions, with less than 41% of its total 

sample of papers considering tactical decisions, either on 

its own, or together with the operational decision level. It is 

also clear that all papers covering tactical decisions have 

accounted for both the economic and environmental pillars; 

the social pillar, on the other hand, has only been addressed 

in five. Once again, stochastic programming is considered 

in the largest amount of papers in this group, with one case 

related to stochastic dynamic programming, followed by 

robust optimization and fuzzy programming. Additionally, 

three papers considering both economic and environmental 

concerns relate to the usage of hybrid programming 

methods, with the combination of stochastic programming 

and either fuzzy programming or robust optimization. 

Nonetheless, the hybrid programming cases reduces to 

only two papers in the social pillar of sustainability, where 

stochastic programming has been combined with fuzzy 

programming. Lastly, the operational level has been the 

least studied one, with only five papers considering this type 

of decisions. Besides, there is no paper addressing both 

operational decisions and the three pillars of sustainability 

altogether, leaving the social pillar with zero records. As 

expected, stochastic programming continues to be widely 

used, with one record of stochastic dynamic programming, 

whereas fuzzy programming has not been accounted for in 

this subgroup. Besides this, there is also one record of the 

usage of hybrid programming through the combination of 

both stochastic and robust programming methods.  

Figure 1 -  Conceptual Map on modelling uncertainty in sustainable supply chains 

 
Current Challenges 
Considering this, one may characterize the current 

challenges faced when modelling uncertainty in sustainable 

supply chains. Accordingly, and considering Figure 2, 

several uncertain parameters that have proven to be highly 

considered should be accounted for, namely: demand; 

environmental and social data; supply and resources 

availability; various costs (e.g., transportation); and 

numerous capacities (e.g., facilities, transportation). Thus, it 

is crucial to understand which optimization method(s) to 

use, where proper and efficient solution approaches should 

be applied in order to provide feasible and valid results. 

Hence, the choice of optimization method should be aligned 

with the type of uncertain parameter considered. For 

instance, in cases where historical data is given or easily 

obtained, optimization approaches dealing with more exact 

values and results should be investigated. Moreover, multi-

stage programming should also be further studied, which, 

by considering a longer planning horizon, can provide 

decision-makers with more complete and reliable 

information. Concerning sustainability modelling, a holistic 

economic assessment, as well as a sound assessment of 

environmental and social aspects represent another 

challenge that should also be reached. Thus, economic 

objectives should be carefully selected depending on the 

type of analysis under consideration, where problems 

involving investments should consider project assessment 

indicators, such as the NPV, where the inherent associated 

risk is contemplated. Moreover, and given their 

characteristics, the use of LCA-based methods presents a 

research potential for the environmental pillar assessment. 

Likewise, the social pillar assessment, which has not yet 

been fully considered nor properly modelled, may benefit 

from an integrated approach, where social-LCA methods 

may prove to be successful. Finally, the integration of the 

different decision levels should also be acknowledged, in 

order to explore the multi-functional activities of any supply 

contemplating sustainability issues in a comprehensive 

manner, while fostering a supply chain holistic view. 

 

 
 
 
 
 
 
 

 

Figure 2 - Research Framework on sustainable supply chain under uncertainty 
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4. Problem Statement & Mathematical Model Definition 
 
he development and formulation of the decision-support tool 
for the design and planning of a sustainable supply chain 
under uncertainty follows the developed work accomplished 
in [7], where the authors have proposed a decision-support 
tool for the design and planning of closed-loop supply 
chains by focusing on strategic-tactical problems. Hence, 
the present work models the same generic supply chain 
representation, following a four-echelon structure, whose 
goals are to maximize the Net Present Value, minimize the 
environmental impact of a supply chain network, and 
maximize the social benefits inherent to such structure. 
Accordingly, this model formulation mainly varies from the 
one presented in [7] in the following topics: (i) uncertainty 
acknowledgement in parameters considered to be more 
critical in the design and planning of a sustainable supply 
chain, such as product demand, raw materials supply, 
transportation and facilities construction costs, and, 
recovered products rate of return; (ii) risk consideration in 
the economic objective function; (iii) environmental 
assessment based on the ReCiPe 2016 LCA methodology; 
and, (iv) social assessment though the incorporation of 
social indicators related to the contribution to economic 
development, equal opportunities/discrimination, and health 
and safety of workers. 
 
Considering this, and so as to properly model the 
uncertainty considerations of the model, a dynamic 
approach has been selected, since it brings robustness and 
generalization when compared to static optimization 
methods, while innovation as it has not been widely 
explored in the modelling of sustainable supply chains 
under uncertainty yet. Subsequently, stochastic dynamic 
optimization has been selected as the optimization 
approach to be used. This choice, which mainly lies on the 
characteristics of the method, leads to the further selection 
of the proper technique to apply in order to describe 
uncertainty. Hence, and taking into consideration the 
relevant literature’s contributions and insights on the 
subject, the stochastic dynamic optimization approach has 
been applied through the scenario-based technique, 
applicable when a continuous range of future outcomes is 
not available. In this approach, the uncertainty is 
represented by a scenario tree, where, at each stage, a 
discrete number of nodes represents points in time where 
realizations of the uncertain parameters take place and 
decisions must be made. Moreover, each node of the tree, 
apart from the root, is connected to both a unique node at 
the previous stage, known as the ancestor node, and to 
other nodes at the following stage, called the successors 
[34]. As of the stages, these correspond to a time when the 
decision-maker updates the information with new available 
data, and not necessarily to specific time periods [35].  
 
 
As of the environmental assessment, LCA has been 
selected as the most appropriate tool, since it is described 
to be the most scientifically reliable option currently 
available for studying and evaluating the environmental 
impacts of a certain product of process, allowing both 
retrospective and prospective assessment [36]. 
Accordingly, LCA is a method that quantifies all relevant 
emissions and resources consumed, as well as the related 
environmental and health impacts and resource depletion 
issues that are associated with any goods or services. 
Moreover, it takes into consideration the entire life cycle of 
the good or service, from extraction of resources, through 
production, use, recycling, and disposal Thus, a typical LCA 
method follows a generic structure, where the initial step 
considers the collection of the life-cycle inventory of a given 
good or service. Following this is the characterization step, 
where the environmental impact of each emitted substance 
or resource consumed is determined and categorized in 
either a midpoint and/or endpoint environmental impact 
category, which, in turn, correspond to the environmental 
mechanism itself and to the subsequent damage, 
respectively. This structure continues with both the 
normalization and weighting steps (step 3 and 4, 
respectively), and finishes in step 5, with the arrival at a 
single score.   
Within the LCA approach, there are several distinctive 
methods available and developed, which may use different 
models in the characterization step, different normalization 
assumptions and/or different weighting factors [37]. The 
ReCiPe methodology, however, is considered to be a 
proper one since, not only portrays a follow up of the Eco-

Indicator 99 method, but also combines the CML 2002, 
while following the typical LCA structure, leading to confirm 
this to be a proper tool to apply in this paper.  
 
Finally, and regarding the social pillar of sustainability, it has 
been concluded that the overall literature’s contribution 
does not follow an integrated approach, but only several 
distinctive social indicators instead. Considering the 
numerous advantages of using an approach of this kind, it 
is thus crucial to account for this issue and hence propose 
a possible method to be followed. Hence, and according to 
[38], the Social Life Cycle Assessment (SLCA) is presented 
as the most effective technique, within the Life Cycle 
Sustainability Assessment (LCSA), to assess the social 
impacts of products throughout their life cycles. Accordingly, 
the SLCA is defined as an assessment technique of social 
and socioeconomic aspects of products and their positive 
and negative impacts (and potential impacts) along their 
entire life cycles. Moreover, it should also be noted that the 
ultimate objective for conducting the SLCA is to promote 
improvement of social conditions and of the overall socio-
economic performance of a product throughout its life cycle 
for all of its stakeholders [38], [39]. Lastly, and taking into 
consideration the work developed by [39], the SLCA follows 
a similar framework as the (environmental) LCA, and is thus 
organized in four steps as: (i) goal and scope definition; (ii) 
Social Life Cycle Inventory analysis; (iii) Social Life Cycle 
Impact assessment; and, (iv) Social Life Cycle 
Interpretation.  
 
Part of the mathematical model formulated is here 
presented, where the objective functions are identified and 
defined. Thus, it should be noted that additional parameters, 
variables, and constraints are not here identified.  
 
Mathematical Formulation 
 
Indices and related sets 
 
i, j Entities or locations          I = Isup U If U Iw U Ic U Iair U Iport = Iloc1 U Iloc2 ...  

 Isup                        Suppliers 

 If    Factories  

 Iw    Warehouses  

Ic    Markets/Clients  

Iair    Airports 

 Iport    Seaports 

 Iloc1 , Iloc2    Location 1, Location 2, … 

a    Transportation Modes     A = Atruck U Aplane U Aship  

 Atruck                      Truck 

 Aplane    Airplane   

Aship    Ship 

g  Technologies                    G = Gprod U Grem  

 Gprod                      Production technologies 

 Grem    Remanufacturing technologies  

m, n     Products        M = Mrm U Mfp U Mrp  

 Mrm                       Raw Materials 

 Mfp   Manufactured Products 

 Mrp   Recovered Products 

t         Stages  

s        Scenarios 

γ        Investments (1 = entities, 2 = technologies, 3 = transportation)    

c        Environmental midpoint categories 

U       Allowed entity-entity connections  U =  {(i, j) ∶  i, j ∈ I}  

V       Allowed product-entity relations     V =  {(m, i): m ∈ M ∧ i ∈ I}     

H      Product-technology pairs                H =  {(m, g): m ∈ M ∧ g ∈ G} 

Hprod – product-technology pairs for production technologies 

Hrem – product-technology pairs for remanufacturing technologies  

F      Allowed materials flows between entities F = {(m, i, j): (m, i) ∈ V ∧ (i, j) ∈ U} 

The description of each subset considers the given examples: 

FINFFP –final product (FP) that enters(IN) factories(F) and comes from entity i 

FOUTFFP –final product(FP) that leaves(OUT) factories(F) and goes to entity i  

FOUTW – allowed flows of products leaving (OUT) warehouses (W)  

Net  Allowed transport modes between entities  Net = {(a, i, j): a ∈ A ∧ (i, j) ∈ U}

     

NetP All allowed network   NetP = {(a,m, i, j): (a, i, j) ∈ Net ∧ (m, i, j) ∈ F} 

 

Parameters 

Entity related parameters  

𝑤𝑖 Workers needed when opening entity i 

𝑙𝑐𝑖 Labour cost at location i 

𝑤𝑝𝑠𝑞𝑖 Necessary number of workers per sqm for entity i 
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Product related parameters 

𝑝𝑠𝑢𝑚  Price per sold unit of product m 

𝑟𝑚𝑐𝑚𝑖  Cost of raw material m supplied by supplier i  

𝑟𝑝𝑐𝑚  Cost of recovered product m  

𝑝𝑤𝑚  Weight of product m  

𝑠𝑐𝑚  Inventory cost of product m  

 

Technology related parameters 

𝑜𝑝𝑐𝑔   Operational costs of technology g  

𝑤𝑔                    Fixed workers per technology g 

𝑡𝑒𝑐𝑔   Installation cost of technology g 

 

Transportation related parameters 

𝑚ℎ𝑤           Maximum driving hours per week 

𝑓𝑡𝑐𝑎            Fixed transportation cost for transportation mode a  

𝑎𝑣𝑐𝑎           Average vehicle consumption (1 per 100 km) 

𝑓𝑝              Fuel price (€/l) 

𝑣𝑚𝑐           Vehicle maintenance costs (€/km) 

𝑐𝑓𝑝𝑖          Contracted payment to the airline or freighter for allocated capacity 

per stage and/or for hub terminal use 

𝑤𝑎                Workers per transportation mode a for the case of road transportation. 

For the cases of air and sea transportations, it represents the average number 

of jobs created in airlines and freighters per kg km 

 

Environmental related parameters 

𝑒𝑖𝑚𝑔𝑐        Environmental impact characterization factor of producing product m 

with technology g at midpoint category c (per product unit) 

𝑒𝑖𝑎𝑐         Environmental impact characterization factor of producing product m 

with transportation mode a at midpoint category c (kg km) 

𝑒𝑖𝑖𝑐       Environmental impact characterization factor of installing entity i at 

midpoint category c (per square meter) 

𝜂𝑐            Normalization factor for midpoint category c 

 

Social related parameters 

𝑤𝑒𝑑        Importance weight of social impact indicator related to the contribution 

to economic development subcategory 

𝑤𝑔𝑟    Importance weight of social impact indicator related to the equal 

opportunities/discrimination subcategory through the wage level between 

genders 

𝑤𝑎𝑐𝑐      Importance weight of social impact indicator related to the health and 

safety of workers subcategory through the number of accidents occurred  

𝑠𝑖𝑚𝑖𝑛
𝑒𝑑        Minimum possible value of social impact related to the contribution to 

economic development subcategory 

𝑠𝑖𝑚𝑎𝑥
𝑒𝑑        Maximum possible value of social impact related to the contribution to 

economic development subcategory 

𝑠𝑖𝑚𝑖𝑛
𝑔𝑟

    Minimum possible value of social impact related to the equal 

opportunities subcategory 

𝑠𝑖𝑚𝑎𝑥
𝑔𝑟

    Maximum possible value of social impact related to the equal 

opportunities subcategory 

𝑠𝑖𝑚𝑖𝑛
𝑎𝑐𝑐        Minimum possible value of social impact related to the health and 

safety subcategory 

𝑠𝑖𝑚𝑎𝑥
𝑔𝑟

      Maximum possible value of social impact related to the health and 

safety subcategory 

𝑒𝑣𝑖            Economic value of entity i 

𝑟𝑑𝑖            Regional development level at location i  

𝑓𝑎𝑤𝑖          Average female wage in entity i  

𝑚𝑎𝑤𝑖        Average male wage in entity i  

𝑟𝑎𝑖            Number of accidents reported in entity i  

𝑐𝑒𝑖            Contribution factor of entity i to the supply chain  

𝑓𝑠𝑐𝑖          Contribution of entity i to the supply chain  

𝑡𝑓𝑣𝑖          Total value of entity i in the supply chain  

 

Stochastic parameters  

𝜌𝑠           Probability of occurrence of scenario s, where ∑  𝜌𝑠  =  1𝑠∈S  

𝑠𝑞𝑚𝑐𝑖𝑠 Construction cost of entity i per square meter under scenario s 

 

Others 

𝑑𝑖𝑗          Distance between entities i and j (km) 

𝑤𝑝𝑡        Number of weeks per stage  

𝑤𝑤ℎ       Weekly working hours 

𝑖𝑟           Interest rate 

𝑠𝑣𝛾         Percentage salvage value of investment 𝛾 

𝑡𝑟           Tax rate 

𝜕            Cash flow certainty estimation percentage 

 

Decision Variables 

Continuous variables  

𝑆𝑚𝑖𝑡𝑠       Amount of inventory of product m in entity i in stage t under scenario s 

𝑃𝑚𝑔𝑖𝑡𝑠        Amount of product m produced with technology g at entity i in stage 

t under scenario s 

𝑅𝑚𝑔𝑖𝑡𝑠     Amount of product m remanufactured with technology g at entity i in 

stage t under scenario s 

𝑋𝑚𝑎𝑖𝑗𝑡𝑠     Amount of product m transported by transportation mode a from entity 

i to entity j in stage t under scenario s 

𝑌𝐶𝑖         Capacity of entity i   

 

Integer variables  

𝐾𝑎𝑖 Number of transportation modes in entity i  

𝑄𝑎𝑖𝑗𝑡𝑠      Number of trips with transportation mode a between entities i and j in 

stage t under scenario s   

 

Binary variables  

𝑌𝑖= 1 if entity i is installed 

𝑍𝑔𝑚𝑖= 1 if technology g that produces product m is installed in entity i  

 

Auxiliary variables at objective functions  

𝑟𝑁𝑃𝑉            Risk-adjusted net present value  

𝐶𝐹𝑡𝑠               Cash flow in stage t under scenario s  

𝑁𝐸𝑡𝑠              Net earnings in stage t under scenario s 

𝐹𝐶𝐼𝛾              Fixed capital investment of investment 𝛾 

𝐷𝑃𝑡                Depreciation of the capital at stage t 

𝑠𝑖𝑛𝑜𝑟
𝑒𝑑          Normalized value of social impact related to the contribution to 

economic development subcategory 

𝑠𝑖𝑛𝑜𝑟
𝑔𝑟

                 Normalized value of social impact related to the equal opportunities 

subcategory 

𝑠𝑖𝑛𝑜𝑟
𝑎𝑐𝑐            Normalized value of social impact related to the health and safety 

subcategory 

𝐸𝑛𝑣𝐼𝑚𝑝𝑎𝑐𝑡 Environmental impact indicator  

𝑆𝑜𝑐𝐵𝑒𝑛𝑒𝑓𝑖𝑡   Social impact indicator 
 
Constraints 
  
Several constraints have been developed in the model so as to properly 
represent a sustainable supply chain. Thus, these may be grouped into five 
categories, namely: material balances; entity capacity; transportation; 
technology; and, non-anticipatively. As of the latter, these are necessary when 
modelling a sustainable supply chain under uncertainty in a dynamic 
environmental, and are represented as follows.  
 
Non-anticipatively constraints: 
 

𝑆𝑚𝑖𝑡𝑠 = 𝑆𝑚𝑖𝑡𝑠′ , 𝑃𝑚𝑔𝑖𝑡𝑠 = 𝑃𝑚𝑔𝑖𝑡𝑠′ , 𝑅𝑚𝑔𝑖𝑡𝑠 = 𝑅𝑚𝑔𝑖𝑡𝑠′ , 𝑋𝑚𝑎𝑖𝑗𝑡𝑠 = 𝑋𝑚𝑎𝑖𝑗𝑡𝑠′ , 𝑌𝐶𝑇𝑖𝑡𝑠
= 𝑌𝐶𝑇𝑖𝑡𝑠′ , 𝐾𝑎𝑖𝑡𝑠 = 𝐾𝑎𝑖𝑡𝑠′ , 𝑄𝑎𝑖𝑗𝑡𝑠 = 𝑄𝑎𝑖𝑗𝑡𝑠′ , 

,  
𝑚 𝜖 𝑀, 𝑖, 𝑗 𝜖 𝐼, 𝑔 𝜖 𝐺, 𝑎 𝜖 𝐴, 𝑡 𝜖 𝑇      ∧      𝑠, 𝑠′ 𝜖 𝑆 𝑥 (𝑠 ≠  𝑠′)             (1) 
 
 
 
Objective Functions 
 
Economic Objective Function 

𝑚𝑎𝑥 𝑟𝑁𝑃𝑉 =  ∑ 𝜌𝑠𝑠  (∑
𝐶𝐹𝑡𝑠 .𝜕

(1 + 𝑖𝑟)𝑡𝑡 𝜖 𝑇  −  ∑ 𝐹𝐶𝐼𝛾𝛾 )                 (2) 

𝐶𝐹𝑡𝑠  =  {
                    𝑁𝐸𝑡𝑠 ,          𝑡 =  1, . . . , 𝑁𝑇 − 1 ∧  𝑠 ∈  𝑆

𝑁𝐸𝑡𝑠  +  ∑ (𝑠𝑣𝛾𝐹𝐶𝐼𝛾)𝛾 ,         𝑡 =  𝑁𝑇 ∧  𝑠 ∈  𝑆     
                               (3) 

𝑁𝐸𝑡𝑠  =  (1 −  𝑡𝑟) [ ∑ 𝑝𝑠𝑢𝑚𝑋𝑚𝑎𝑖𝑗𝑡𝑠  −  (∑ 𝑟𝑚𝑐𝑚𝑖𝑋𝑚𝑎𝑖𝑗𝑡𝑠(𝑚,𝑖,𝑗) ∈ 𝐹𝑂𝑈𝑇𝑆𝑈𝑃𝑅𝑀
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

 +(𝑚,𝑖,𝑗) ∈ 𝐹𝐼𝑁𝐶𝐹𝑃
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

∑ 𝑜𝑝𝑐𝑔𝑃𝑚𝑔𝑖𝑡𝑠(𝑚,𝑔) ∈ 𝐻𝑝𝑟𝑜𝑑
𝑖 ∈ 𝐼𝑓

 + ∑ 𝑟𝑝𝑐𝑚𝑋𝑚𝑎𝑖𝑗𝑡𝑠(𝑚,𝑖,𝑗) ∈ 𝐹𝑂𝑈𝑇𝐶𝑅𝑃
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

+ ∑ 𝑜𝑝𝑐𝑔𝑅𝑚𝑔𝑖𝑡𝑠(𝑚,𝑔) ∈ 𝐻𝑟𝑒𝑚
𝑖 ∈ 𝐼𝑓

 +

 ∑ (
𝑎𝑣𝑐𝑎

100
 𝑓𝑝 +  𝑣𝑐𝑚) . 2𝑑𝑖𝑗𝑄𝑎𝑖𝑗𝑡𝑠  + ∑ 𝑡𝑐𝑎𝑠 . 𝑝𝑤𝑚 . 𝑑𝑖𝑗 . 𝑋𝑚𝑎𝑖𝑗𝑡𝑠(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

𝑎 ∈ (𝐴𝑝𝑙𝑎𝑛𝑒 ∪ 𝐴𝑏𝑜𝑎𝑡)

 +(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃
𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘

 ∑ ℎℎ𝑐𝑗 . 𝑋𝑚𝑎𝑖𝑗𝑡𝑠(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

(𝑗 ∈ 𝐼𝑎𝑖𝑟 ∧ 𝑖 ∉𝐼𝑎𝑖𝑟)  ∪ (𝑗 ∈ 𝐼𝑝𝑜𝑟𝑡  ∧ 𝑖 ∉ 𝐼𝑝𝑜𝑟𝑡)

 + ∑ 𝑐𝑓𝑝𝑖 . 𝑌𝑖𝑖 ∈ 𝐼𝑎𝑖𝑟 ⋃ 𝐼𝑏𝑜𝑎𝑡
 +  ∑ 𝑠𝑐𝑚𝑆𝑚𝑖𝑡𝑠(𝑚,𝑖) ∈ 𝑉  +

 ∑ 𝑤𝑖 . 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝑌𝑖𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑤
 +  ∑ 𝑤𝑝𝑠𝑞. 𝑙𝑐𝑖 . 𝑤𝑤ℎ. 𝑤𝑝𝑡. 𝑌𝐶𝑖𝑖 ∈ 𝐼𝑓  ∪ 𝐼𝑤

 +

 ∑ 𝑤𝑔 . 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝑍𝑚𝑔𝑖(𝑚,𝑔) ∈ 𝐻
𝑖 ∈ 𝐼𝑓

 +  ∑ 𝑤𝑎 . 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝐾𝑎𝑖𝑖 ∈ 𝐼
𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘

)] +  𝑡𝑟. 𝐷𝑃𝑡                (4) 

𝐷𝑃𝑡  =  ∑ 𝐷𝑃𝛾𝑡𝐹𝐶𝐼𝛾𝛾                                                             (5) 
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𝐹𝐶𝐼𝛾  =  

{
 
 

 
 
∑ 𝑠𝑞𝑚𝑐𝑖𝑠. 𝑌𝐶𝑖𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑤

 , 𝛾 =  1

∑ 𝑡𝑒𝑐𝑔𝑍𝑔𝑚𝑖  (𝑚,𝑔)∈𝐻
𝑖 ∈ 𝐼𝑓

 , 𝛾 =  2

∑ 𝑓𝑡𝑐𝑎𝑎 . 𝐾𝑎𝑖(𝑎,𝑖,𝑗)∈𝑁𝑒𝑡
𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘

 , 𝛾 =  3

                                     (6) 

 

 
Environmental Objective Function 
 

𝑚𝑖𝑛 𝐸𝑛𝑣𝐼𝑚𝑝𝑎𝑐𝑡 =  ∑ 𝜌𝑠𝑠 (∑ 𝜂𝑐𝑐 (∑ 𝑒𝑖𝑚𝑔𝑐 . 𝑝𝑤𝑚 . (𝑃𝑚𝑔𝑖𝑡𝑠  +  𝑅𝑚𝑔𝑖𝑡𝑠)𝑡 ∈ 𝑇 ,𝑖 ∈ 𝐼𝑓
(𝑚,𝑔) ∈ 𝐻

  +

 ∑ 𝑒𝑖𝑎𝑐 . 𝑝𝑤𝑚 . 𝑑𝑖𝑗. 𝑋𝑚𝑎𝑖𝑗𝑡𝑠𝑡 ∈ 𝑇
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

 +  ∑ 𝑒𝑖𝑖𝑐 . 𝑌𝐶𝑖𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑤
))              (7) 

 
 
Social Objective Function 

𝑚𝑎𝑥 𝑆𝑜𝑐𝐵𝑒𝑛𝑒𝑓𝑖𝑡 = ∑ 𝜌𝑠𝑠 ( 𝑤𝑒𝑑 . 𝑠𝑖𝑛𝑜𝑟
𝑒𝑑  +  wgr . 𝑠𝑖𝑛𝑜𝑟

𝑔𝑟
 −  𝑤𝑎𝑐𝑐 . 𝑠𝑖𝑛𝑜𝑟

𝑎𝑐𝑐)  =

∑ 𝜌𝑠𝑠 (𝑤𝑒𝑑 .  
∑

fsci
tfvi

𝑒𝑣𝑖(1−𝑟𝑑𝑖).𝑌𝑖i ∈ 𝐼𝑓∪𝐼𝑤
  − 𝑠𝑖𝑚𝑖𝑛

𝑒𝑑

𝑠𝑖𝑚𝑎𝑥
𝑒𝑑  − 𝑠𝑖𝑚𝑖𝑛

𝑒𝑑  
  +  𝑤𝑔𝑟 .  

∑ 𝑐𝑒𝑖.
𝑓𝑎𝑤𝑖
𝑚𝑎𝑤𝑖

.𝑌𝑖i ∈ 𝐼𝑓∪𝐼𝑤
  − 𝑠𝑖𝑚𝑖𝑛

𝑔𝑟

𝑠𝑖𝑚𝑎𝑥
𝑔𝑟

 − 𝑠𝑖𝑚𝑖𝑛
𝑔𝑟

 
+

 𝑤𝑎𝑐𝑐 .
𝑠𝑖𝑚𝑎𝑥
𝑎𝑐𝑐  −   ∑

fsci
tfvi

rai.𝑌𝑖i ∈ 𝐼𝑓∪𝐼𝑤

𝑠𝑖𝑚𝑎𝑥
𝑎𝑐𝑐  − 𝑠𝑖𝑚𝑖𝑛

𝑎𝑐𝑐  
 )                         (8) 

 

 

5. Model Validation – Case-Study Analysis 

 

Case-study Definition & Characterization 
The model presented is now applied into a representative 
case-study concerning the supply chain network of 
Calzedonia Group, an Italian company focused on the 
apparel industry. This is  performed based on the 
company’s provided reports of year 2019, as well as on 
further available and public information provided by the 
group. The focus is on the European region, and particularly 
in the set of countries where the brand has its strongest 
presence. The following two brands from Calzedonia Group 
are considered: Calzedonia and Tezenis Underwear. These 
represent the vast majority of stores across the European 
region, while having a fairly compatible array of products. 
Six of the most influential European markets have been 
accounted for: Italy, Spain, France, Germany, Portugal, and 
Poland. Finally, the products considered in the study 
represent a standard pair of cotton mid-calf socks (product 
1), as well as a pair of seamless totally invisible sheer tights 
(product 2), two widely sold products worldwide under both 
of these brands. 
 
Additionally, and based on Group (2019)’s main findings, 
the Calzedonia Group supply chain network, apart from the 
already selected markets, has been defined as follows: (i) 
two suppliers, Italy and China; (ii) three factories, located in 
Avio (Italy), Grissi (Italy), and Croatia; and, (iii) three 
warehouses, established in Vallese di Oppeano (Italy), 
Castagnaro (Italy), and Varazdin (Croatia). Concerning the 
selection of transportation modes, this comprises three 
options: (i) truck, to move between European entities; (ii) 
airplane, to move from a warehouse to a market, in cases 
where demand must be met within a short amount of time 
(only applicable for Portugal, and Poland); and, (iii) ship, 
whose goal is to move raw materials from the China supplier 
to the factories established in Europe. Finally, and given the 
closed-loop approach considered in this study, it is also 
assumed to have established two different types of 
technologies per factory: (i) production technology; and, (ii) 
remanufacturing technology. Considering this, an analysis 
of the group’s supply chain network is performed for a time 
horizon of five years, so as to understand whether or not the 
considered network, under the influence of uncertainty in 
several parameters, is the optimal configuration for this 
case-study. Thus, considerations such as the necessity, or 
lack of it, of maintaining all pre-existent entities/establishing 
additional entities (i.e.: warehouses established in all of the 
countries’ markets) are taken in this analysis.  
 
Results Analysis & Discussion 
Given the information presented above, and in order to 
validate and take relevant remarks of the decision-support 
tool presented above, this has been implemented in GAMS 
31.1, and the case-study solved using CPLEX 12.1, in an 
Intel Core i7-8550U, 1.80 – 1.99 GHz processor with 16GB 
RAM. Moreover, and apart from validating the model 
presented, this section aims to provide sufficient evidence 
on how a sustainable supply chain under uncertainty 
behaves depending on the type of uncertainty faced, so that 
more critical uncertain parameters may be identified. 
Hence, all considerations of uncertainty here presented are 
compared with the deterministic version of the sustainable 
supply chain under consideration (case A), so that one can 

better understand the changes and the impacts of having a 
given parameter as uncertain. It should be noted that, during 
implementation, it has been acknowledged that all three 
objective functions are considered to have equal relevance 
to the decision-makers and have hence been normalized 
and assigned identical relevance. This decision lies with the 
belief that the final purpose of any sustainable supply chain 
should be the equal consideration of each pillar. Hence, the 
following results analysis is divided into three parts: i) 
tactical uncertainty; ii) objective function uncertainty; and, iii) 
dynamic uncertainty. Thus, and considering part i), 
parameters such as demand, supply, and end-of-lifecycle 
products’ rate of return have been considered as uncertain, 
due, not only to their high relevance to the network, but also 
because these portray some of the most common uncertain 
aspects faced. As of part ii), this includes costs that highly 
impact any supply chain network, that is, both construction 
and (variable) transportation costs. It should be noted that, 
despite considering three distinctive objective functions in 
the model developed, only the economic objective function 
has been considered for the uncertainty characterization, 
due to the fact that, for both environmental and social 
parameters, historical/estimated data is hard to obtain, 
leading to difficulties in applying the stochastic dynamic 
optimization approach here discussed. Considering this, for 
both the tactical and the objective function uncertainty 
analysis, a two-stage approach was firstly acknowledged. 
Afterwards, a final results analysis is then provided in iii), 
where the parameter(s) with the highest influence on the 
overall model network are considered in a stochastic 
dynamic approach. The choice of such strategy lies in the 
large problem complexity in hands, thus allowing, through 
this approach, to have a more comprehensive analysis of 
the uncertainty consequences on the design and planning 
of a sustainable supply chain. Considering this, for each 
case being discussed, several aspects are taken into 
consideration and compared, namely: (1) entities and 
corresponding capacities, which displays all entities that are 
part of the network and their respective capacities; (2) 
suppliers selection and allocation, where all suppliers 
considered in each network are identified; (3) production 
and remanufacturing technologies, which highlight the 
relationship between each production/remanufacturing 
technology in each considered factory, for each final 
product; (4) inventory per product, with a connection 
between each final product and each opened warehouse 
regarding inventory levels; (5) transportation modes, which 
represents all transportation modes selection; and, (6) 
sustainable indicators, where the final score for each 
objective function is given.   
 
Tactical Uncertainty 
 
The tactical uncertainty evaluation’s purpose is to analyse 
and comprehend the network changes that occur when 
there is some uncertainty associated to one (or more) of the 
key aspects mentioned above. Hence, a total of five 
distinctive cases have been considered, as follows: (B) 
uncertain demand; (C) uncertain supply; (D) uncertain 
products’ rate of return; (E) uncertain demand and uncertain 
supply; and, (F) uncertain demand, uncertain supply, and 
uncertain products’ rate of return. Thus, each is to be 
analysed and compared to the deterministic case (case A), 
where no uncertainties are considered. The uncertainty 
variation for each case B to F considers five distinctive 
scenarios, where, for each parameters variation have been 
acknowledged. For instance, case B reflects demand 
variations from -10% to +10%, while case C varies the 
supply values from -5% to +15%. In uncertain rate of return 
of final products, however, variations are from -10% to 
+10%. Finally, both cases E and F see their parameters 
varying from -10% to +15%.  

The obtained results are given in Table 1, where all cases 
are considered and compared to the deterministic version, 
for all six relevant aspects mentioned above (1 – 6). 
 

Table 1 - Tactical uncertainties results analysis 
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Hence, when one accounts for each uncertain parameter on 
its own, demand represents the highest contributor to the 
overall changes in a sustainable supply chain network. This 
remark is further supported by cases E and F, where 
demand has been combined with other uncertain 
parameters, and where one can state that the obtained 
networks follow the same pattern as if demand was the only 
uncertain aspect. Hence, and even though these additional 
parameters did not portray major changes on the network 

on their own, when combined with the uncertain demand, 
greater impacts have been registered, thus validating the 
significant relevance of having uncertain demand on a 
sustainable supply chain. On another note, it becomes clear 
that case D represents the scenario where a higher Net 
Present Value is obtained. The best possible score for the 
environmental assessment is also considered in this case, 
where extra contributions may be due to possibly higher 
amounts of returned products and consequently higher 
remanufacturing processes. Finally, cases B, E and F 
represent the overall best social assessment, which may 
heavily rely on the increased economic development 
created with the establishment of additional entities.   
 
Economic Objective Function Uncertainty 
 
Following the analysis performed above, in the economic 
objective function uncertainty assessment, that is, for the 
consideration of uncertainty in both construction and 
(variable) transportation costs that affect the economic 
objective function, a result analysis on the network changes 
is performed. In this analysis, a total of three are considered: 
(G) uncertain construction costs; (H) uncertain (variable) 
transportation costs; and (I) combination of construction and 
variable transportation costs. Likewise, these cases are to 
be compared with the initial network of the deterministic 
case, that is, case A, in the six identified key points for this 
analysis. The uncertainty variation for each case G to I 
considers five distinctive scenarios, where, for each 
parameters variation have been acknowledged. For 
instance, case G reflects demand variations from -10% to 
+45%, while case H varies the supply values from -15% to 
+20%, and case I from -15% to +45%.  

The obtained results are given in Table 2, where all cases 
are considered and compared to the deterministic version, 
for all six relevant aspects mentioned above (1 – 6). 
 

Table 2 – Economic objective function uncertainties results analysis 
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Considering this, it becomes clear that, when accounting for 
each uncertain parameter on its own, neither portrays major 
changes in the overall network structure. Moreover, when 
combined, this network remains unaltered, thus leading to 
believe that, even though both parameters lead to changes 
in several aspects, neither is seen as critical when 
uncertain. Nonetheless, both uncertainties should always 
be acknowledged when present, since these may affect 
several characteristics, such as production, 
remanufacturing, inventory, and transportation options.   
Finally, and when considering the sustainability indicators, 
it becomes clear that case G, where construction costs are 
uncertain, represents the scenario where a higher Net 
Present Value is obtained. The best possible score for the 
environmental assessment is also considered in this case. 
Finally, all three cases under analysis, G, H and I, represent 
similarities in the overall best social assessment. 
 
Dynamic Optimization Assessment 
 
Given the result analysis presented above, where one may 
conclude the influence of each uncertain parameter on a 
sustainable supply chain network, it becomes clear that 
demand portrays the most significant changes in the 
network. Considering this, this parameter has been further 
analysed and here studied in a dynamic environment, where 
its uncertainty is dependent on time periods/stages. Hence, 
and as depicted in Figure 5, the stochastic dynamic 
approach follows a scenario tree formulation, where 
demand is considered to be uncertain for a time period of 
five years. Therefore, all nodes have been assigned a 
probability of occurrence, while each branch an associated 
demand variation. Finally, a total of 16 scenarios have been 
originated. From this, results for this analysis have been 
obtained, leading to a new case under analysis, case J, 
whose results are compared with cases A and B. 
 
Accordingly, from the obtained results, it is possible to state 
that case J network greatly differs from case B, where 
demand was studied as an uncertain parameter, by only 
opening 7 out of 13 possible facilities. As of the suppliers 
selection and allocation, this remains unchanged, since only 
the supplier from Italy is acknowledged in any of the cases 
here considered, which may be explained by high 
transportation costs from other valid suppliers, to the 
factories established in Europe. Moreover case J’s 
production of final product 1 is fairly distributed across all 
three factories, with slightly higher contributions from 
Croatia. As of final product 2, its production heavily relies on 
the facility established in Gissi, followed by contributions 

made by the Avio and Croatia factories. In the 
remanufacturing of both products 1 and 2, the Croatian 
factory holds full responsibility. These aspects, when 
compared to both cases A and B, lead to significant 
changes in the overall production and remanufacturing of 
both final products. As of the amount of inventory per facility, 
all three are seen as key contributors, where Vallese Di 
Oppeano represents the facility with the highest overall 
inventory level of product 1, followed by Castagnaro and 
Varazdin; as of product 2, it is mainly stored in Varazdin, 
followed by Vallese Di Oppeano and Castagnaro 
warehouses. Thus, and when accounting for the obtained 
results in both cases A and B, one can state the obvious 
differences, as in these cases preferences are given to 
facilities that are not considered in case J. One final aspect 
to consider in the inventory analysis is the resemblance of 
case J to case B in the final product with the overall highest 
inventory, where product 2 has been preferred. On another 
note, only one transportation mode has been considered in 
case J, leaving all product flows being taken care by road 
transportation. Furthermore, and despite being the only 
transportation option for products flows in case J, the total 
amount of trucks invested in case J is less than case A and 
B by 6 and 22, respectively. Finally, one may state the great 
differences from both the economic and environmental 
objective functions obtained in case J for either case A or B. 
Thus, and even though some aspects may be due to several 
topics specific to the six aspects here under discussion, 
special remarks should be given to the following points: (i) 
possible higher economic and environmental negative 
impacts as a consequence of higher demand values from 
the ones obtained in cases A and B, as a result of the 
uncertain variations throughout time; and, (ii) possible 
higher economic and environmental costs as a result of 
recourse actions taken between time periods, seen as 
corrective measures once the outcome of a given time 
period/stage is presented. 
 
Henceforth, and when comparing both types of analysis 
performed, one may conclude that when uncertain 
considerations throughout time are considered, the impact 
on the overall network structure is highly influenced. This, 
along with the fact that decision-makers more than ever 
need a holistic view of the consequences of a given 
uncertain parameter while accounting for a given time 
horizon, lead to conclude that dynamic approaches namely 
stochastic dynamic programming, are a necessary tool for 
the design and planning of a sustainable supply chain.  
  

6. Conclusion & Future Work 
This paper focuses on the design and planning of 
sustainable supply chains under uncertainty.  
Frequently applied optimization methods to model 
uncertainty are identified and described, and special 
considerations are given to more rigorous and sophisticated 
methods. A comprehensive literature review identifies the 
main contributions and research gaps. It was seen that even 
though several articles explore supply chain networks under 
uncertainty, little has been done to incorporate sustainability 
concerns. Moreover most works only consider static 
optimization, leaving the dynamic optimization advantages 
highly unutilized.  
A decision-support tool is also developed with the purpose 
of properly modelling uncertainty in sustainable supply 
chains. The economic assessment is performed through the 
Net Present Value, the environmental impact is assessed 
through LCA, and social concerns are tackled by providing 
a relevant review on S-LCA, and applying its key points, 
while following the same rationale as the LCA. This tool is 
applied to a representative case-study of Calzedonia 
Group, an Italian company settled in the garment industry, 
often dealing with complex and extensive networks.  
The analysis has been divided into three main parts: 
tactical, with regards to the objective function, and with 
dynamic considerations. Thus, and while the first two have 
been studied in a two-stage stochastic environment, the 
latter has focused on the impact of an uncertain parameter 
in a sustainable supply chain throughout time. From these, 
several conclusions are achieved, namely the great impact 
obtained from having demand as an uncertain parameter, 
and the need to always account for all possible uncertain 
parameters of a sustainable supply chain network since the 
beginning of its design and planning process, which does 
not necessarily negatively impacts the overall obtained 
sustainability indicators. Another key consideration is the 
great added value obtained from the incorporation of a more 
sophisticated method, such as, the stochastic dynamic 
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programming, which has led to significant changes in the 
network structure and functioning.  
 
Future work to be considered includes the further 
investment in the optimization tools available, exploring the 
advantages of both the dynamic and hybrid programming, 
with a hybrid dynamic optimization approach. Moreover, 
additional uncertain parameters should be explored, namely 
entities varying capacities, and environmental and social 
considerations. Nonetheless, with the improved robustness 
and sophistication of the optimization methods used, comes 
computational burdens, which may lead to a higher level of 
complexity in obtaining valid solutions. Therefore, and in 
order to tackle such issue, one should further explore 
efficient solution techniques, which may rely on the 
problem’s decomposition, or even in the utilization of 
metaheuristics to properly reach the desirable outcome. 
Another aspect that should be considered in the future relies 
on the social assessment. Even though the present 
dissertation provides relevant research on the S-LCA, 
further development should be made, where, for instance, 
additional social indicators should be considered. 
Furthermore, this assessment should also follow on the 
continuous advances being made in the S-LCA 
methodology. Following the work here developed, the 
epsilon constraint method is another tool interesting to be 
explored so that one can further understand the impact of 
uncertainty in a sustainable supply chain, by analysing the 
different outcomes and impacts of having the three objective 
functions varying in emphasis on one (or more) over 
other(s), hence, avoiding having to assign specific weights 
to each objective function. Finally, further applications of the 
work developed in real case-studies represent an 
interesting topic to explore, where the results obtained from 
to model would be compared to a deterministic baseline 
held by a company. Interesting industries to explore are 
those that, not only suffer from high uncertainties, but also 
represent a great case to further explore social concerns, 
thus involving entities from distinctive countries and hence 
different regional developments and living conditions.  
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